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1 INTRODUCTION 

1.1 Background 

Thousands of miles of cable guardrail have been installed on highways across the United 

States. Often, these installations include socketed post foundations as opposed to simply driving 

barrier posts into the surrounding soil. Socketed foundations allow posts to slide in and out of 

ground sockets for easy replacement in the event of system damage during a crash. Thus, the 

time and cost of system repairs can be reduced. However, several state Departments of 

Transportation (DOTs) have reported that real-world crashes into cable barrier installations have 

resulted in damage to existing socketed foundation designs. Unfortunately, foundation damage 

requires repair crews to either replace the socketed foundation itself or drive a post into the soil 

adjacent to the damaged socket. Either situation defeats the purpose of using sockets, increases 

the time necessary to restore a damaged barrier, results in higher maintenance costs, and leads to 

increased risk to repair crews working adjacent to high-speed facilities. 

The majority of existing socketed post foundations are constructed by coring a hole in the 

soil, placing a steel sleeve in the hole, and backfilling the hole with Portland cement concrete. 

However, many of these designs have insufficient reinforcement to resist impact loads that are 

transmitted through the post and into the socket. Further, many of the foundations are too 

shallow to resist translation and rotation displacements when a post is impacted. Thus, a need 

exists to develop socketed foundations for cable guardrail posts that perform as intended in the 

field. 

Phase I of this project aimed to develop a socketed foundation that would be compatible 

with a wide variety of cable barrier systems [1]. Years ago, the S4x7.7 (S102x11.5) steel section 

was the strongest post used in cable barrier systems, and these prior socketed foundations were 
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designed and evaluated in combination with this strong post. Four dynamic impact tests were 

conducted on various foundation designs, all of which resulted in concrete cracking and fracture.  

As a result of this first round of component testing, the S4x7.7 (S102x11.5) post was 

viewed as a strong cable post that may not be suitable for use in rigid foundations. Thus, the 

weaker S3x5.7 (S76x8.5) post, which is the standard post for current nonproprietary cable barrier 

systems, was selected for continued development and testing of the socketed foundation. 

Although the S3x5.7 (S76x8.5) post is weaker than the S4x7.7 (S102x11.5) post, it still provides 

greater strength than the majority of cable system posts. Thus, a foundation designed to support 

S3x5.7 (S76x8.5) posts would have sufficient strength to support most other cable barrier posts 

as well.  

It should be noted that a third research and development effort dedicated to the design of 

socketed foundations for cable posts was conducted in parallel to the study described herein. The 

development of the Midwest Weak Post (MWP) has been ongoing and is intended for use in non-

proprietary cable barrier systems [2]. As such, optimized socketed foundations were desired for 

these significantly weaker MWP posts. The design and evaluation of these optimized socketed 

foundations is described in a separate research report [3]. 

1.2 Objective 

The objective of this research project was to develop a socketed foundation for use with 

the S3x5.7 (S76x8.5) post. Foundation designs were to remain focused on placing a steel socket 

within a cylindrical, reinforced concrete shaft. The foundation was to sustain minimal damage 

and displacements during impacts, thus keeping repair costs to a minimum. This component 

testing program was conducted to determine foundation designs for cable barrier systems that 

have satisfied the safety standards published in the National Cooperative Highway Research 
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Program (NCHRP) Report No. 350 [4] or the Manual for Assessing Safety Hardware (MASH) 

[5]. 

1.3 Research Approach 

Development of the socketed foundations for S3x5.7 (S76x8.5) posts was initially based 

on the recommendations made at the conclusion of Phase I of this project [1]. From those 

recommendations, new foundations were designed with various reinforcement configurations, 

cross section dimensions, and embedment depths. The new foundation designs were evaluated 

with the same type of dynamic bogie tests conducted during the previous phases of the project. 

However, testing was completed in three different soils to determine the necessary foundation 

strengths and embedment depths associated with the various roadside conditions.  Round 1 of 

dynamic testing was conducted with the concrete foundations installed in a weak, sandy soil. 

Round 2 of testing was conducted with the foundations installed in a standard, strong soil 

typically utilized during full-scale crash testing of roadside barrier hardware. Finally, Round 3 of 

testing was conducted with the foundations installed in a strong soil with a 4-in. (102-mm) 

asphalt overlay. Conclusions and recommendations were formulated for each of these soil 

conditions and were documented herein. 
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2 COMPONENT TEST CONDITIONS 

2.1 Purpose 

Dynamic bogie testing of various socketed foundation designs was conducted to evaluate 

the structural integrity of the foundations and to quantify the lateral deflections of the 

foundations during impact events. 

2.2 Scope 

Ten bogie tests were conducted on S3x5.7 (S76x8.5) posts inserted into the reinforced 

concrete, socketed foundations. Similar to the impact conditions used in the previous phase of 

this project, the targeted impact conditions were a speed of 20 mph (32 km/h), an angle of 90 

degrees (creating strong-axis bending), and an impact height of 11 in. (279 mm). This impact 

height was chosen to replicate the height of the bumper on a small car, which would cause high 

shear and bending loads to be imparted to the top of the socketed foundations.  

A foundation had to resist the impact loads without fracture or cracking of the concrete in 

order to be deemed adequate. Additionally, the displacements of the foundation had to be 

limited, such that a new post could be dropped into place without having to reset the foundation. 

Utilizing a 1-in. (25-mm) displacement would result in a replacement post being installed 3.5 

degrees from plumb, and the top of the post would be about 2¾ in. (70 mm) from its original, 

plumb position. Although not ideal for new installations, it was felt that these displacements 

would be acceptable for replacement posts after a severe impact to the system. Thus, 

displacements of the foundation were desired to be less than 1 in. (25 mm), measured at 

groundline. The combination of these criteria would ensure that a socketed foundation could be 

reused in the same system without repairs or resetting. 

Evaluation of the socketed foundation configurations was completed in three rounds of 

dynamic component testing. During the first round, five tests were conducted on foundations 
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installed in a weak, sandy soil. Round 2 consisted of four tests on foundations installed in 

standard strong soils, while Round 3 consisted of one test on a foundation installed within a 4-in. 

(102-mm) asphalt pavement. Further details on individual tests are included at the beginning of 

each respective testing chapter. Combining the results from all three rounds of testing allowed 

for the development of foundation design guidelines based on site-specific soil conditions.  

2.3 Test Facility 

Physical testing on the socketed foundations for cable posts was conducted at the 

Midwest Roadside Safety Facility (MwRSF) outdoor proving grounds, which is located at the 

Lincoln Air Park on the northwest side of the Lincoln Municipal Airport. The facility is 

approximately 5 miles (8 km) northwest from the University of Nebraska-Lincoln’s city campus. 

2.4 Equipment and Instrumentation 

Equipment and instrumentation utilized to collect and record data during the dynamic 

bogie tests included a bogie, accelerometers, a retroreflective optic speed trap, high-speed and 

standard-speed digital video, and still cameras. 

2.4.1 Bogie 

A rigid-frame bogie was used to impact the posts. A variable-height, detachable impact 

head was used in the testing. The bogie impact head consisted of a 2½-in. x 2½-in. x ¼-in. (64-

mm x 64-mm x 6-mm) square tube mounted onto the outside flange of a W6x25 (W152x37.2) 

steel beam with reinforcing gussets. A ¾-in. (19-mm) neoprene pad was attached to the front of 

the square tube to prevent local damage to the post from the impact. The impact head was bolted 

to the bogie vehicle, creating a rigid frame with an impact height of 11 in. (279 mm), except for 

test no. HTCB-5 when the impact height was 15 in. (381 mm). The bogie with the impact head is 

shown in Figure 1. The weight of the bogie with the addition of the mountable impact head and 

accelerometers was approximately 1,800 lb (816 kg). 
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A pickup truck with a reverse cable tow system was used to propel the bogie to a target 

impact speed of 20 mph (32 km/h). When the bogie approached the end of the guidance system, 

it was released from the tow cable, allowing it to be free-rolling when it impacted the post. A 

remote-control braking system was installed on the bogie, allowing it to be brought safely to rest 

after the test. 

 
Figure 1. Rigid-Frame Bogie on Guidance Track 

2.4.2 Accelerometers 

A combination of four different environmental shock and vibration sensor/recorder 

systems was used to measure the longitudinal accelerations during the bogie tests. All of the 

accelerometers were mounted near the center of gravity of the bogie vehicle. Table 1 contains the 

specific accelerometers utilized during each bogie test. 

The first two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition 

systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. 

The acceleration sensors were mounted inside the bodies of custom-built SLICE 6DX event data 
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recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was 

configured with 7 GB of non-volatile flash memory, a range of ±500 g’s, a sample rate of 10,000 

Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The “SLICEWare” computer software 

program and a customized Microsoft Excel worksheet were used to analyze and plot the 

accelerometer data.  

The third accelerometer system was a two-arm piezoresistive accelerometer system 

manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to 

measure each of the longitudinal, lateral, and vertical accelerations independently at a sample 

rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed 

and manufactured by DTS. More specifically, data was collected using a DTS Sensor Input 

Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 

sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 

module rack. The module rack was configured with isolated power/event/communications, 

10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and 

module rack were crashworthy. The “DTS TDAS Control” computer software program and a 

customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 

The fourth system, Model EDR-3, was a triaxial piezoresistive accelerometer system 

manufactured by Instrumented Sensor Technology, Inc. (IST) of Okemos, Michigan. The EDR-3 

was configured with 256 kB of RAM, a range of ±200 g’s, a sample rate of 3,200 Hz, and a 

1,120 Hz low-pass filter. The “DynaMax 1 (DM-1)” computer software program and a 

customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 

At the time of these tests, the EDR-3 was not calibrated by an ISO 17025 approved 

laboratory due to the lack of an ISO 17025 calibration laboratory with the capabilities of 

calibrating the unit. However, the EDR-3 was calibrated by IST, which provided traceable 
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documentation for the calibration. Further, MwRSF recognizes that the EDR-3 transducer does 

not satisfy the minimum 10,000 Hz sample frequency recommended by MASH. Following 

numerous test comparisons, the EDR-3 has been shown to provide equivalent results to the DTS 

unit, which does satisfy all MASH criteria and has ISO 17025 calibration traceability. Therefore, 

MwRSF has continued to use the EDR-3 during physical impact testing. 

Table 1. Accelerometers Utilized During Each Dynamic Component Test 

Test No. SLICE-1 SLICE-2 DTS-TDAS EDR-3 

HTCB-5   X X 

HTCB-6    X 

HTCB-7    X 

HTCB-8    X 

HTCB-9    X 

HTCB-10    X 

HTCB-11 X   X 

HTCB-17 X X   

HTCB-18 X X   

HTCB-19 X X   

 

2.4.3 Retroreflective Optic Speed Trap 

A retroreflective optic speed trap was used to determine the speed of the bogie vehicle 

before impact. Three retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, 

were applied to the side of the vehicle. When the beam of light emitted by the Emitter/Receiver 

was reflected back by the targets, a signal was sent to the data acquisition computer recording at 

10,000 Hz and activated the external LED box. The speed was then calculated using the spacing 

between the retroreflective targets and the time between the signals. LED lights and high-speed 

digital video analysis were only used as a backup in the event that vehicle speeds could not be 

determined from the electronic data. 
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2.4.4 Digital Photography 

At a minimum, one AOS high-speed digital video camera and one JVC standard-speed 

digital video camera were used to document each test. The AOS camera had a frame rate of 500 

frames per second, and the JVC camera had a frame rate of 29.97 frames per second. The 

cameras were placed laterally from the posts, with a view perpendicular to the bogie’s direction 

of travel. For test nos. HTCB-10 and HTCB-11, a second JVC digital camera was placed on the 

opposite side of the posts and elevated such that it had a downward view to the top surface of the 

foundation. For test nos. HTCB-17 through HTCB-19, two GoPro digital cameras, with a frame 

rate of 120 frames per second, were utilized in place of the JVC cameras. A Nikon D50 digital 

still camera was also used to document pre- and post-test conditions for all tests. 

2.5 End-of-Test Determination 

During standard bogie–post impact events, the desired test results have been based on 

force vs. deflection characteristics. Subsequently, the end-of-test has typically been defined as 

the first of three occurrences: (1) fracture of the test article; (2) excessive rotation of the test 

article; or (3) the bogie vehicle overriding or losing contact with the test article. However, the 

focus of the bogie tests conducted herein was to evaluate the structural adequacy of the socketed 

foundations and to measure the maximum deflections or rotations of the foundations. Since the 

maximum resistive forces for the post assembly were restricted by the material and section 

properties of the post, the data recorded by the accelerometers would only be important in 

measuring the load at fracture. Therefore, the first two end-of-test criteria were discarded, and 

the true end-of-test was defined as the time when the bogie vehicle overrode or lost contact with 

the post. 
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2.6 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using the SAE 

Class 60 Butterworth filter, conforming to the SAE J211/1 specifications [6]. The pertinent 

acceleration signal was extracted from the bulk of the data signals. The processed acceleration 

data was then multiplied by the mass of the bogie to get the impact force using Newton’s Second 

Law. Next, the acceleration trace was integrated to find the change in velocity versus time. Initial 

velocity of the bogie, calculated from the pressure tape switch data, was then used to determine 

the bogie velocity, and the calculated velocity trace was integrated to find the bogie’s 

displacement. Combining the previous results, a force vs. deflection curve was plotted for each 

test. Finally, integration of the force vs. deflection curve provided the energy vs. deflection curve 

for each test. 
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3 DESIGN DETAILS – ROUND 1, WEAK SOIL 

Following the poor performance of the initial foundation designs tested in Phase I 

(Designs A through C), four additional foundation designs (Designs D through G) were 

fabricated and evaluated through the first round of dynamic component testing with S3x5.7 

(S76x8.5) posts. Similar to the designs of Phase I, each socketed foundation consisted of a steel 

socket placed in the middle of a cylindrical, reinforced concrete foundation. However, each of 

the new foundations evaluated herein incorporated increased shear strength to prevent concrete 

failure. Design details for each of the foundations are shown in Figures 2 through 9, and 

photographs documenting the construction and installation of the foundations are shown in 

Figure 10. Material specifications, mill certifications, and certificates of conformity for the 

reinforced concrete, socketed foundations are shown in Appendix A. 

Each socketed foundation consisted of a 12-in. (305-mm) diameter concrete cylinder and 

had a 60-in. (1,524-mm) embedment depth. The concrete was specified to a minimum 28-day 

compressive strength of 3,500 psi (24 MPa). All of the foundations were reinforced with both 

circumferential and vertical grade 60 steel rebar. However, the quantity and spacing of the steel 

reinforcement varied between designs. A 16-in. (406-mm) long, 4-in. x 4-in. x ¼-in. (102-mm x 

102-mm x 6-mm) steel tube was located at the top-center of each foundation to act as a socket 

for the S3x5.7 (S76x8.5) posts. Finally, all of the foundations were installed within a test pit 

filled with a weak soil material conforming to the AASHTO Grade A-3 sand requirements [7]. 

Each foundation design had a unique mechanism for increasing the shear capacity of the 

foundation, and the designs were labeled and tested in order of increasing strength (from Design 

D to Design G). Design D utilized 4½-in. (114-mm) spacings between transverse steel hoops 

throughout the top portion of the foundation, while Design E utilized a reduced spacing of 2½ in. 

(64 mm). The foundation of Design F was nearly identical to that of Design E, execpt Design F 
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incorporated ¼-in. (6-mm) thick shim plates welded on the outside of the post flanges. These 

plates were intended to bear against the inside of the sockets below the surface of the foundation, 

thus reducing the propensity for shear cracking at the top of the foundation. Additionally, the 

moment arm of the post is increased, resulting in a decrease in shear load and further reducing 

the propensity of concrete cracking. Note, the socket thickness had to be reduced from ¼ in. (6 

mm) to ⅛ in. (3 mm) in order to accommodate the shear plates in Design F. Finally, Design G 

utilized 4-in. (102-mm) spacings between transverse steel hoops and incorporated no. 4 vertical 

bars welded to the front and back faces of the socket. These additional vertical bars would 

provide extra strength and stiffness to the socket against rotational displacements. 
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Figure 2. Bogie Testing Matrix and Setup, Test Nos. HTCB-5 through HTCB-9 
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Figure 3. Bogie Pit Setup, Test Nos. HTCB-5 through HTCB-9 
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Figure 4. Post Assemblies and Reinforcement Configurations, Test Nos. HTCB-5 through HTCB-9 
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Figure 5. Reinforcement Details, Test Nos. HTCB-5 through HTCB-9 
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Figure 6. Steel Post and Socket Details, Test Nos. HTCB-5 through HTCB-9 
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Figure 7. Steel Tube Details, Test Nos. HTCB-5 through HTCB-9 
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Figure 8. Bogie Shear Impact Head Details, Test Nos. HTCB-5 through HTCB-9 



 

 

2
0
 

A
p

ril 2
8

, 2
0
1

5
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
9
3
-1

5
 

 
Figure 9. Bill of Materials, Test Nos. HTCB-5 through HTCB-9 
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Figure 10. Weak Soil Foundation Construction and Installation Photographs 
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4 COMPONENT TESTING – ROUND 1, WEAK SOIL 

4.1 Purpose 

Socketed foundations are required to resist displacement within the ground while 

maintaining structural integrity. Obviously, the surrounding soil conditions are directly related to 

the displacement expected for a given foundation during an impact. A stiff, strong soil would 

provide greater resistance to translation and rotation than a weaker soil. Since cable barriers are 

frequently placed in depressed medians where saturated soils are common, the performance of 

socketed foundations in weak soils is critical. Thus, the first round of dynamic component testing 

was conducted within a weak, sandy soil in order to establish the required embedment depth for 

socketed foundations supporting S3x5.7 (S76x8.5) posts. 

4.2 Scope 

Five bogie tests were conducted on socketed foundations placed in a sand pit satisfying 

AASHTO A-3 sand material requirements. For test nos. HTCB-5 through HTCB-9, the target 

impact conditions were a speed of 20 mph (32 km/h) and an angle of 90 degrees, creating a 

classical “head-on” or full-frontal impact with the strong axis of the S3x5.7 (S76x8.5) post, as 

shown in Table 2.  

The goal of the testing program was to identify the weakest concrete foundation that 

maintained its structural integrity while also resisting lateral displacements. Note that the 

strength of each socketed foundation designs increases incrementally from Design D to Design 

G. Thus, testing began with Design D. The critical impact height was selected as 11 in. (279 

mm) to represent the lower height of a small car bumper or the height to the center of a small car 

wheel. However, due to the excessive displacements and foundation fractures observed during 

Phase I of this research effort [1], impacts began at a height of 15 in. (381 mm). If a socketed 

foundation was not damaged under this loading condition, the corresponding design was again 
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tested with an 11-in. (279-mm) impact height. However, if a design failed at either impact 

height, testing continued with the next foundation design.  

Table 2. Bogie Testing Matrix – Test Nos. HTCB-5 through HTCB-9 

Test 

No. 
Design Soil Type 

Impact 

Height 

 in. 

(mm) 

Embedment 

Depth 

 in. 

(mm) 

Target Impact 

Speed 

mph 

(km/h) 

Target 

Impact 

Angle 

deg. 

HTCB-5 D A-3 Sand 
15 

(381) 

60 

(1,524) 

20 

(32) 
90 

HTCB-6 D A-3 Sand 
11 

(279) 

60 

(1,524) 

20 

(32) 
90 

HTCB-7 E A-3 Sand 
11 

(279) 

60 

(1,524) 

20 

(32) 
90 

HTCB-8 F A-3 Sand 
11 

(279) 

60 

(1,524) 

20 

(32) 
90 

HTCB-9 G A-3 Sand 
11 

(279) 

60 

(1,524) 

20 

(32) 
90 

 

 

4.3 Weak-Soil Test Results 

Through component testing, the performance of each socketed foundation was evaluated 

in terms of both structural integrity and displacement of the foundation in weak soils. A 

foundation system had to resist the impact loads without fracture to be deemed adequate. 

Additionally, the researchers desired to limit the displacements of the foundation to less than 1 

in. (25 mm), as measured at groundline. The combination of these criteria would ensure that a 

socketed foundation could be reused in the same system without repairs or resetting.  

Accelerometer data was used to find the resistance force supplied by the S3x5.7 

(S76x8.5) post and foundation assembly. Since the accelerometers were mounted on the bogie 

vehicle, the forces and displacements calculated from the acceleration data were related to the 

motion of the bogie and the forces applied to it from the posts. These forces and displacements 
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did not directly reflect the force applied to the top of the foundations or the displacement of the 

foundation. However, the recorded forces can be used to indicate approximate force magnitudes 

imparted to the sockets. Individual results for all accelerometers utilized during each test are 

shown in Appendix B. Due to the plastic deformation of the posts, foundation displacements 

were measured from the high-speed video and post-test field measurements. 

4.3.1 Test No. HTCB-5 (Design D) 

Test no. HTCB-5 was conducted on December 21, 2011 at approximately 10:00 a.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 3. 

Table 3. Weather Conditions, Test No. HTCB-5 

Temperature 30° F 

Humidity 75% 

Wind Speed 9 mph 

Wind Direction 260° From True North 

Sky Conditions Sunny 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-5, the bogie impacted the post 15 in. (381 mm) above the 

groundline at a speed of 20.8 mph (33.5 km/h), causing strong-axis bending in the post. Upon 

impact, the foundation began to rotate through the soil, and a plastic hinge formed in the post at 

groundline. By 0.006 seconds after impact, a concrete crack had formed across the top of the 

foundation adjacent to the back edge of the socket. The foundation assembly reached a 

maximum dynamic deflection of 0.8 in. (20 mm) at 0.030 seconds. The post continued to bend 

over until the bogie head overrode the top of the post at 0.100 seconds after impact and at a 
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deflection of 29.5 in. (749 mm). The top of the foundation had permanently displaced 0.3 in. (8 

mm) laterally during the impact event.  

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 11. Inertial effects resulted in a high peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 13.3 

kips (59.2 kN) near 5.8 in. (147 mm) of deflection. Following this peak, the force gradually 

began to decrease until approximately 17 in. (432 mm), where a relatively steady force of 

approximately 2 kips (8.9 kN) was observed for the rest of the impact event. At a maximum 

deflection of 29.5 in. (749 mm), the post and socketed foundation had absorbed 140.3 kip-in. 

(15.9 kJ) of energy. 

Damage to the test article consisted of plastic bending to the steel post and cracking to the 

back side of the concrete foundation. Concrete shear cracking resulted in a 7-in. (178-mm) deep 

piece of concrete fracturing off the top-back edge of the concrete foundation. Subsequently, a 

portion of the steel socket and one transverse steel stirrup were exposed. Time-sequential and 

post-impact photographs are shown in Figure 12. Based on these results with a 15-in. (381-mm) 

impact height, the rest of the tests were to be conducted with an impact height of 11 in. (279 

mm).  
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Figure 11. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-5 
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 IMPACT 

 
 0.020 sec 

 
 0.040 sec 

 
 0.060 sec 

 
 0.080 sec 

 
 0.100 sec 

 

Figure 12. Time-Sequential and Post-Impact Photographs, Test No. HTCB-5 
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4.3.2 Test No. HTCB-6 (Design D) 

Test no. HTCB-6 was conducted on January 4, 2012 at approximately 12:15 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 4. 

Table 4. Weather Conditions, Test No. HTCB-6 

Temperature 50° F 

Humidity 41% 

Wind Speed 6 mph 

Wind Direction 270° From True North 

Sky Conditions Sunny 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

The concrete foundation assembly from test no. HTCB-5 was rotated 180 degrees and re-

used for test no. HTCB-6. During test no. HTCB-6, the bogie impacted the post 11 in. (279 mm) 

above the groundline at a speed of 20.0 mph (32.2 km/h), causing strong-axis bending in the 

post. Upon impact, the foundation rotated back through the soil, and a plastic hinge formed in the 

post at groundline. At 0.036 seconds, the top of the concrete foundation fractured, and the steel 

socket began to bend. Both the socket and post continued to bend backward until the bogie head 

overrode the top of the post at 0.148 seconds after impact. Due to the concrete fracturing apart, 

foundation displacements could not be measured for this test.  

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 13. Inertial effects resulted in a high peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 15.8 

kips (70.3 kN) near 5.8 in. (147 mm) of deflection. Following this second peak, a relatively 
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steady force of 12 kips (53.4 kN) was observed until approximately 10 in. (254 mm), when the 

concrete fractured and the force rapidly decreased. At a deflection of 25.7 in. (653 mm), the post 

and socketed foundation had absorbed 156.2 kip-in. (17.6 kJ) of energy. 

Damage to the test article consisted of plastic bending in the post and fracturing of the 

foundation. The post was bent at groundline, but not to the extent observed during test no. 

HTCB-5. The top 16 in. (406 mm) of the concrete foundation was fractured, and chunks of 

concrete were scattered around the impact location. The steel socket and several reinforcing bars 

were exposed and bent backward. Time-sequential and post-impact photographs are shown in 

Figure 14. 

 
 

Figure 13. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-6 
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Figure 14. Time-Sequential and Post-Impact Photographs, Test No. HTCB-6 
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4.3.3 Test No. HTCB-7 (Design E) 

Test no. HTCB-7 was conducted on January 5, 2012 at approximately 10:00 a.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 5. 

Table 5. Weather Conditions, Test No. HTCB-7 

Temperature 40° F 

Humidity 55% 

Wind Speed 3 mph 

Wind Direction 230° From True North 

Sky Conditions Sunny 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-7, the bogie impacted the post 11 in. (279 mm) above the 

groundline at a speed of 20.7 mph (33.3 km/h), causing strong-axis bending in the post. Upon 

impact, the foundation began to rotate through the soil, and a plastic hinge formed in the post at 

groundline. The foundation assembly reached a maximum dynamic deflection of 1.1 in. (28 mm) 

at 0.040 seconds. The post continued to bend over until the bogie head overrode the top of the 

post at 0.110 seconds after impact and at a deflection of 30.2 in. (767 mm). The top of the 

concrete foundation had permanently displaced 0.8 in. (20 mm) laterally during the impact event, 

as measured through video analysis. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 15. Inertial effects resulted in a high peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 13.6 

kips (60.5 kN) at 5.9 in. (150 mm) of deflection. Following this peak, the force gradually 



April 28, 2015  

MwRSF Report No. TRP-03-293-15 

32 

decreased for the remainder of the impact event. At a maximum deflection of 30.2 in. (767 mm), 

the post and socketed foundation had absorbed 144.6 kip-in. (16.3 kJ) of energy. 

Damage to the test article consisted of plastic bending to the steel post at groundline and 

concrete cracking. The foundation experienced concrete shear cracking, which caused a 5.3-in. 

(135-mm) deep piece of concrete to fracture off the top-back edge of the foundation. 

Subsequently, a portion of the steel socket and one transverse steel stirrup were exposed. Time-

sequential and post-impact photographs are shown in Figure 16. 

 
 

Figure 15. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-7 
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 IMPACT 

 
 0.020 sec 

 
 0.040 sec 

 
 0.060 sec 

 
 0.080 sec 

 
 0.100 sec 

 

Figure 16. Time-Sequential and Post-Impact Photographs, Test No. HTCB-7 
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4.3.4 Test No. HTCB-8 (Design F) 

Test no. HTCB-8 was conducted on January 5, 2012 at approximately 1:15 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 6. 

Table 6. Weather Conditions, Test No. HTCB-8 

Temperature 60° F 

Humidity 27% 

Wind Speed 13 mph 

Wind Direction 240° From True North 

Sky Conditions Sunny 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-8, the bogie impacted the post 11 in. (279 mm) above the 

groundline at a speed of 20.9 mph (33.6 km/h), causing strong-axis bending in the post. Upon 

impact, the foundation began to rotate through the soil, and a plastic hinge formed in the post at 

groundline. The foundation reached a maximum dynamic deflection of 1.0 in. (25 mm) at 0.042 

seconds. The post continued to bend over until the bogie head overrode the top of the post at 

0.112 seconds after impact and at a deflection of 31.1 in. (790 mm). The top of the concrete 

foundation had permanently displaced 0.8 in. (20 mm) laterally during the impact event, as 

determined from video analysis. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 17. Inertial effects resulted in a high peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 13.3 

kips (59.2 kN) at 6 in. (152 mm) of deflection. Following this second peak, the force gradually 
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decreased until approximately 14 in. (356 mm) of deflection. A relatively steady force of 

approximately 2 kips (8.9 kN) was observed for the remainder of the impact event. At the 

maximum deflection of 31.1 in. (790 mm), the post assembly had absorbed 143.9 kip-in. (16.3 

kJ) of energy. 

Damage to the test article consisted of plastic bending of the post at groundline and 

concrete cracking. The foundation experienced concrete shear cracking, which caused a 4.8-in. 

(122-mm) deep chunk of concrete to fracture off the top-back edge of the foundation. 

Subsequently, a small portion of the steel socket and one transverse steel stirrup were exposed. 

Time-sequential and post-impact photographs are shown in Figure 18. 

 
 

Figure 17. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-8 
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Figure 18. Time-Sequential and Post-Impact Photographs, Test No. HTCB-8 
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4.3.5 Test No. HTCB-9 (Design G) 

Test no. HTCB-9 was conducted on January 6, 2012 at approximately 10:00 a.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 7. 

Table 7. Weather Conditions, Test No. HTCB-9 

Temperature 46° F 

Humidity 43% 

Wind Speed 20 mph 

Wind Direction 360° From True North 

Sky Conditions Cloudy 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-9, the bogie impacted the post 11 in. (279 mm) above the 

groundline at a speed of 20.8 mph (33.5 km/h), causing strong-axis bending in the post. Upon 

impact, the foundation began to rotate through the soil, and a plastic hinge formed in the post at 

groundline. The foundation reached a maximum dynamic deflection of 1.2 in. (30 mm) at 0.038 

seconds. The post continued to bend over until the bogie head overrode the top of the post at 

0.112 seconds after impact. The top of the concrete foundation had permanently displaced 1.1 in. 

(28 mm) laterally during the impact event, as determined from video analysis. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 19. Inertial effects resulted in a high peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 13.7 

kips (60.9 kN) at 5.9 in. (150 mm) of deflection. Following this second peak, the force gradually 

decreased until approximately 13 in. (330 mm) of deflection. A relatively steady force of 
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approximately 2 kips (8.9 kN) was observed for the rest of the impact event. At the maximum 

deflection of 26.8 in. (681 mm), the post assembly had absorbed 130.2 kip-in. (14.7 kJ) of 

energy. 

Damage to the test article consisted of plastic bending of the post at groundline and 

concrete cracking. The foundation experienced concrete shear cracking, which caused a 4.8-in. 

(122-mm) deep chunk of concrete to fracture off the top-back edge of the foundation. 

Subsequently, a small portion of the steel socket and one transverse steel stirrup were exposed. 

Time-sequential and post-impact photographs are shown in Figure 20. 

 
 

Figure 19. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-9 

0

20

40

60

80

100

120

140

160

180

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35

En
e

rg
y 

(k
ip

-i
n

.)

Fo
rc

e
 (

ki
p

s)

Deflection (in.)

Force and Energy vs. Deflection (HTCB-9)

Force

Energy



April 28, 2015  

MwRSF Report No. TRP-03-293-15 

39 

 
 IMPACT 

 
 0.020 sec 

 
 0.040 sec 

 
 0.060 sec 

 
 0.080 sec 

 
 0.100 sec 

 

Figure 20. Time-Sequential and Post-Impact Photographs, Test No. HTCB-9
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4.4 Weak-Soil Testing Discussion 

Results from the dynamic component testing conducted in weak soil are summarized in 

Table 8. Force vs. deflection and energy vs. deflection plots for each test are shown in Figures 21 

and 22, respectively. The forces observed during the tests were similar in magnitude and 

duration. As expected, test no. HTCB-5 resulted in the lowest forces, since it was the only test 

conducted with the increased impact height of 15 in. (381 mm). All of the force curves contained 

an inertial spike within the first 2 in. (51 mm) of deflection, followed by relatively steady force 

plateaus over 10 kips (45 kN). Upon post yielding between 5 in. and 10 in. (127 mm and 254 

mm), the forces dropped rapidly, and the bogie overrode the post. The variations in forces and 

energies between tests were considered negligible, and the result of small variations in impact 

speed, material strengths, and soil compaction. 

Testing began with the weakest of the foundation configurations, Design D. When 

impacted at a height of 15 in. (381 mm) above the groundline during test no. HTCB-5, the 

foundation had a permanent displacement of only 0.3 in. (8 mm), well below the targeted 1-in. 

(25-mm) limit. Shear loads imparted to the socket from the post resulted in concrete cracking and 

a piece of concrete spalling off the top-back side of the foundation. Due to the limited 

displacement and minor damage to the weakest of the foundation designs, the remainder of the 

tests were conducted with the lower, more critical, impact height of 11 in. (279 mm).  

Retesting of foundation Design D with the lower impact height resulted in severe damage 

to the top of the foundation in the form of concrete fractures and socket bending. Recall that the 

foundation assembly utilized in test no. HTCB-5 was rotated 180 degrees and reused for test no. 

HTCB-6. The previously damaged foundation assembly may have attributed to the poor 

performance of test no. HTCB-6. However, if the test were re-run with a new foundation 
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conforming to Design D details, the damage would be expected to be similar, if not greater, than 

that observed during test no. HTCB-5. 

Designs E through G, evaluated in test nos. HTCB-7 through HTCB-9, respectively, had 

similar results. All three configurations experienced concrete shear cracking and fracture of the 

top-back side of the foundation. Thus, none of the incremental design changes intended to 

increase the shear strength of the foundation were enough to prevent concrete shear failure. Due 

to the high amount of transverse and vertical steel already present in the foundation 

configurations, further increasing the internal steel reinforcement likely would not produce better 

results. Rather, the concrete would need to be confined (e.g., wrapping the foundation with steel 

or carbon fiber) or the diameter of the foundations would have to be increased to prevent 

concrete shear failure on the back of the socketed foundation,. 

The permanent displacements observed in Designs E through G were similar, measuring 

0.8 in. (20 mm), 0.8 in. (20 mm), and 1.1 in. (28 mm), respectively. The minor differences in 

displacements were attributed to small variations in impact speeds and soil compaction, since 

these three foundations each had a 12-in. (305-mm) diameter and a 60-in. (1,524-mm) 

embedment depth. The average displacement for these three foundation designs in weak soil was 

0.9 in. (23 mm), which was below the 1-in. (25-mm) displacement limit. Thus, 60 in. (1,524 mm) 

was deemed the minimum embedment depth for a 12-in. (305-mm) diameter socketed 

foundation installed in weak, saturated, or sandy soils in order to prevent excessive 

displacements. 
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Table 8. Dynamic Testing Summary, Foundations Installed in Weak Soil 

Test                    

No. 
Design  

Impact 

Height  

in. 

(mm) 

Impact 

Velocity       

mph 

(km/h) 

Average Force 

kips (kN) 
Peak 

Force 

kips 

(kN) 

Total 

Energy         

kip-in.      

(kJ) 

Permanent 

Foundation 

Deflection 

in.  

(mm) 

Foundation  

Damage 
@ 10" @ 15" @ 20" 

HTCB-5 D 
15 

(381) 

20.8 

(33.5) 

8.9    

(39.6) 

7.7    

(34.3) 

6.4    

(28.5) 

13.3 

(59.2) 

140.3 

(15.9) 

0.3 

(8) 

shear 

cracking/fracture 

HTCB-6 D 
11 

(279) 

20.0 

(32.2) 

11.3 

(50.3) 

9.4    

(41.8) 

7.6    

(33.8) 

15.8 

(70.3) 

156.2 

(17.6) 
NA 

foundation fracture 

& socket bending 

HTCB-7 E 
11 

(279) 

20.7 

(33.3) 

10.0 

(44.5) 

8.4    

(37.4) 

6.8    

(30.2) 

13.6 

(60.5) 

144.6 

(16.3) 

0.8 

(20) 

shear 

cracking/fracture 

HTCB-8 F 
11 

(279) 

20.9 

(33.6) 

9.8    

(43.6) 

8.0    

(35.6) 

6.4     

(28.5) 

13.3 

(59.2) 

143.9 

(16.3) 

0.8 

(20) 

shear 

cracking/fracture 

HTCB-9 G 
11 

(279) 

20.8 

(33.5) 

9.8    

(43.6) 

7.7    

(34.3) 

6.1     

(27.1) 

13.9 

(61.9) 

130.2 

(14.7) 

1.1 

(28) 

shear 

cracking/fracture 
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Figure 21. Force vs. Deflection, Foundations Installed in Weak Soil 
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Figure 22. Energy vs. Deflection, Foundations Installed in Weak Soil 
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5 DESIGN DETAILS – ROUND 2, STRONG SOIL 

Round 1 of dynamic component testing evaluated the performance of socketed 

foundations installed in critically weak soils. However, foundation performance in combination 

with compacted, stiff soils was also desired. Thus, Round 2 of dynamic component testing was 

conducted with the foundations placed within a strong, stiff soil satisfying AASHTO Grade B 

gradation specifications [7] and MASH soil resistance requirements [5]. Design drawings for the 

socketed foundations evaluated in combination with strong soil are shown in Figures 23 through 

32, and photographs of the test installations are shown in Figure 33. Material specifications, mill 

certifications, and certificates of conformity for the reinforced concrete, socketed foundations are 

shown in Appendix A. 

Results from Round 1 of component testing on 12-in. (305-mm) diameter socketed 

foundations indicated that in order to prevent concrete shear failure, either the concrete would 

need to be confined, or the diameter of the foundation would have to be increased. It was unclear 

whether increasing the strength of the soil surrounding the foundation would be sufficient to 

confine the concrete and prevent shear cracking. However, providing external reinforcement to 

the foundations (e.g., sheet steel or carbon fiber wraps) to provide confinement was deemed 

undesirable by the project sponsors. Thus, various diameters for the socketed foundations were 

explored during Round 2 testing.  

Six different socketed foundation designs were fabricated to evaluate performance in 

combination with strong soils (though only four of these six were actually tested). Of these 

foundations, three designs maintained the 12-in. (305-mm) diameter utilized during testing of the 

foundations in weak soil, while three more designs utilized an increased shaft diameter. The 

same internal reinforcement pattern was utilized in all three 12-in. (305-mm) diameter 

foundations, Designs H, J, and K. The reinforcement pattern consisted of a combination of 
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previous Designs E and G to maximize the strength of the foundations against cracking. 

Specifically, the tight, 2½-in. (64-mm) stirrup spacing of Design E was combined with the extra 

vertical steel bars of Design G, as shown in Figures 24, 26, and 27. Designs H, J, and K had 

embedment depths of 24 in. (610 mm), 30 in. (762 mm), and 36 in. (914 mm), respectively. 

Designs L and M utilized an outside diameter of 15 in. (381 mm), while Design N 

utilized an outside diameter of 18 in. (457 mm). All three of the increased diameter foundation 

designs utilized 4-in. (102-mm) spacings between stirrups. The stirrup sizes varied with 

foundation diameter to maintain a constant concrete clear cover of 1½ in. (38 mm), as shown in 

Figures 25 and 28. Only four vertical steel bars were utilized within these three foundation 

designs. The embedment depths for Designs L through N were 24 in. (610 mm), 30 in. (762 

mm), and 30 in. (762 mm), respectively. 

The S3x5.7 (S76x8.5) steel post and the HSS 4-in. x 4-in. x ¼-in. (HSS 102-mm x 102-

mm x 6-mm) steel tube socket remained the same from Round 1 of component testing. 

Additionally, the minimum concrete strength remained at 3,500 psi (24 MPa). Concrete cylinder 

testing revealed the actual strength of the concrete to be 4,800 psi (33 MPa). 

Although six foundation designs were fabricated for Round 2 testing, only four were 

actually impacted. After conducting testing on Design J, it was clear that Design H was too 

shallow to prevent rotation, and after conducting testing on Design M, the increased diameter of 

Design N was deemed unnecessary. Thus, neither Design H nor Design N was evaluated through 

dynamic bogie testing. 
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Figure 23. Bogie Testing Matrix and Setup, Test Nos. HTCB-10, HTCB-11, HTCB-17, and HTCB-18 
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Figure 24. Foundation Configurations with 12-in. (305-mm) Diameters, Test Nos. HTCB-10 and HTCB-11  
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Figure 25. Foundation Configurations with Increased Diameter Foundations, Test Nos. HTCB-17 and HTCB-18  
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Figure 26. Reinforcement Details for 12-in. (305-mm) Diameter Foundations, Test Nos. HTCB-10 and HTCB-11 
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Figure 27. Reinforcement Details for 12-in. (305-mm) Diameter Foundations, Test Nos. HTCB-10 and HTCB-11 
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Figure 28. Reinforcement Details for Increased Diameter Foundations, Test Nos. HTCB-17 and HTCB-18  
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Figure 29. Steel Post and Socket Details, Test Nos. HTCB-10, HTCB-11, HTCB-17, and HTCB-18 
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Figure 30. Bogie Shear Impact Head Details, Test Nos. HTCB-10, HTCB-11, HTCB-17, and HTCB-18 
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Figure 31. Bill of Materials for 12-in. (305-mm) Diameter Foundations, Test Nos. HTCB-10 and HTCB-11 
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Figure 32. Bill of Materials for Increased Diameter Foundations, Test Nos. HTCB-17, and HTCB-18 
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12-in. (305-mm) Diameter Foundation 

 

 
15-in. (381-mm) Diameter Foundation 

 

Figure 33. Test Article Installation Photographs 
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6 COMPONENT TESTING – ROUND 2, STRONG SOIL 

6.1 Purpose 

After completing the testing matrix for socketed foundations installed in critically weak 

soils, it was desired to determine foundation performance in combination with stiff soils similar 

to those typically used during barrier evaluation under MASH [5]. Thus, Round 2 of dynamic 

component testing was conducted with the foundations placed within a strong, stiff soil 

satisfying AASHTO Grade B gradation specifications [7] and MASH soil resistance 

requirements. During Round 2 testing, the embedment depth of the foundations was varied to 

determine the minimum depth required to prevent excessive displacements, greater than 1 in. (25 

mm), in stiff soils. Additionally, the reinforcement configurations and foundation diameters were 

varied in an effort to prevent concrete shear cracking on the back side of the foundation. 

6.2 Scope 

Four bogie tests were conducted on S3x5.7 (S76x8.5) steel posts inserted into reinforced 

concrete, socketed foundations installed in a strong, stiff soil. Test nos. HTCB-10 and HTCB-11 

were conducted on socketed foundations with 12-in. (305-mm) diameters and embedment depths 

of 30 in. (762 mm) and 36 in. (914 mm), respectively. Test nos. HTCB-17 and HTCB-18 were 

conducted on socketed foundations with an increased diameter of 15 in. (381 mm) and 

embedment depths of 30 in. (762 mm) and 24 in. (610 mm), respectively. The target impact 

conditions for all four tests were an impact height of 11 in. (279 mm), a speed of 20 mph (32 

km/h), and an angle of 90 degrees, creating a classic “head-on” impact with the strong axis of the 

post. The test matrix is shown in Table 9. 

As described in Chapter 5, there were six socketed foundation designs fabricated for 

evaluation during Round 2 of component testing. Designs H, J, and K were 12-in. (305-mm) 

diameter foundations with varying embedment depths, while Designs L through N had an 
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increased diameter and varying embedment depths. However, in an effort to limit the amount of 

testing required to determine the necessary foundation strength and embedment depth, the 

middle-sized foundation from each of these two groups was tested first, and the second test 

article would be selected depending upon the results. Thus, the 12-in. (305-mm) diameter socket 

with the middle embedment depth, Design J, was evaluated first. After excessive displacement 

was observed, testing continued with the larger foundation, Design K, and Design H was never 

evaluated. Similarly, Design M was evaluated first and resulted in minimal displacement and 

damage. Thus, Design L was selected for the next test, and Design N was never evaluated. 

Table 9. Bogie Testing Matrix, Foundations in Strong Soil 

Test 

No. 
Design Soil Type 

Impact 

Height 

 in. 

(mm) 

Impact 

Speed 

mph 

(km/h) 

Impact 

Angle 

deg. 

Embed. 

Depth 

 in. 

(mm) 

Foundation 

Diameter 

in. 

(mm) 

HTCB-10 J 
AASHTO 

Grade B 

11 

(279) 

20 

(32) 
90 

30 

(762) 

12 

(305) 

HTCB-11 K 
AASHTO 

Grade B 

11 

(279) 

20 

(32) 
90 

36 

(914) 

12 

(305) 

HTCB-17 M 
AASHTO 

Grade B 

11 

(279) 

20 

(32) 
90 

30 

(762) 

15 

(381) 

HTCB-18 L 
AASHTO 

Grade B 

11 

(279) 

20 

(32) 
90 

24 

(610) 

15 

(381) 

 

6.3 Strong-Soil Results 

Through component testing, the performance of each socketed foundation was evaluated 

in terms of both structural integrity and displacement of the foundation in strong soils. A 

foundation system had to resist the impact loads without fracture to be deemed adequate. 

Additionally, the researchers desired to limit the displacements of the foundation to less than 1 

in. (25 mm), as measured at groundline. The combination of these criteria would ensure that a 

socketed foundation could be reused in the same system without repairs or resetting.  
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Accelerometer data was used to find the resistance force supplied by the S3x5.7 

(S76x8.5) post and foundation assembly. Since the accelerometers were mounted on the bogie 

vehicle, the forces and displacements calculated from the acceleration data were related to the 

motion of the bogie and the forces applied to it from the posts. These forces and displacements 

did not directly reflect the force applied to the top of the foundations or the displacement of the 

foundation. However, the recorded forces can be used to indicate approximate force magnitudes 

imparted to the sockets. Individual results for all accelerometers utilized during each test are 

shown in Appendix B. Due to the plastic deformation of the posts, foundation displacements 

were measured from the high-speed video and post-test field measurements. 

6.3.1 Test No. HTCB-10 (Design J) 

Test no. HTCB-10 was conducted on June 13, 2012 at approximately 12:30 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 10. 

Table 10. Weather Conditions, Test No. HTCB-10 

Temperature 85° F 

Humidity 30% 

Wind Speed 23 mph 

Wind Direction 160° From True North 

Sky Conditions Partly Cloudy 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-10, the bogie impacted the S3x5.7 (S76x8.5) steel post 11 in. 

(279) above the groundline and at a speed of 20.6 mph (33.2 km/h), causing strong-axis bending 

in the post. Upon impact, the foundation assembly began to rotate through the soil, and a plastic 
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hinge formed in the post at groundline. By 0.008 seconds after impact, a concrete crack had 

formed across the top of the foundation adjacent to the back edge of the socket. The foundation 

assembly reached a maximum dynamic deflection of 3.1 in. (79 mm) at 0.052 seconds. The post 

continued to bend over until the bogie head overrode the top of the post at 0.116 seconds after 

impact. The top of the concrete foundation had permanently displaced 2.2 in. (56 mm) laterally 

during the impact event, as determined from video analysis. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 34. Inertial effects resulted in a quick peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 20.7 

kips (92.1 kN) at 5.4 in. (137 mm) of deflection. Following the maximum peak, the force 

gradually decreased until approximately 11 in. (279 mm) of deflection. The force remained 

below 5 kips (22 kN) for the remainder of the impact event. At the maximum deflection of 30.2 

in. (767 mm), the post assembly had absorbed 149.6 kip-in. (16.9 kJ) of energy. 

Damage to the test article consisted of plastic bending of the post at groundline and 

concrete cracking. The foundation experienced concrete shear cracking, which caused a 5-in. 

(127-mm) deep chunk of concrete to fracture off the top-back edge of the foundation. 

Subsequently, a small portion of the steel socket and one transverse steel stirrup were exposed. 

Time-sequential and post-impact photographs are shown in Figure 35. 
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Figure 34. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-10 
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Figure 35. Time-Sequential and Post-Impact Photographs, Test No. HTCB-10 



April 28, 2015  

MwRSF Report No. TRP-03-293-15 

64 

6.3.2 Test No. HTCB-11 (Design K) 

Test no. HTCB-11 was conducted on June 13, 2012 at approximately 5:00 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 11. 

Table 11. Weather Conditions, Test No. HTCB-11 

Temperature 85° F 

Humidity 36% 

Wind Speed 22 mph 

Wind Direction 160° From True North 

Sky Conditions Partly Cloudy 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-11, the bogie impacted the S3x5.7 (S76x8.5) steel post 11 in. 

(279) above the groundline and at a speed of 20.0 mph (32.2 km/h), causing strong-axis bending 

in the post. Upon impact, the foundation assembly began to rotate through the soil, and a plastic 

hinge formed in the post at groundline. By 0.008 seconds after impact, a concrete crack had 

formed across the top of the foundation adjacent to the back edge of the socket. The foundation 

assembly reached a maximum dynamic deflection of 1.1 in. (28 mm) at 0.034 seconds. The post 

continued to bend over until the bogie head overrode the top of the post at 0.106 seconds after 

impact. The top of the concrete foundation had permanently displaced 0.8 in. (20 mm) laterally 

during the impact event, as determined from video analysis. 

Force vs. deflection and energy vs. deflection curves created from the SLICE-1 

accelerometer data are shown in Figure 36. Inertial effects resulted in a quick peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 17.9 
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kips (79.6 kN) at 4.8 in. (122 mm) of deflection. Following the maximum peak, the force 

gradually decreased until approximately 10 in. (254 mm) of deflection. The force remained 

below 5 kips (22 kN) for the remainder of the impact event. At the maximum deflection of 30.1 

in. (765 mm), the post assembly had absorbed 120.0 kip-in. (13.6 kJ) of energy. 

Damage to the test article consisted of plastic bending of the post at groundline and 

concrete cracking. The foundation experienced concrete shear cracking on the back side of the 

foundation, similar to the previously tested 12-in. (305-mm) diameter foundations. However, the 

concrete on the back edge of the foundation did not fracture away as seen previously. Time-

sequential and post-impact photographs are shown in Figure 37. 

 

 
Figure 36. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-11 
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Figure 37. Time-Sequential and Post-Impact Photographs, Test No. HTCB-11 
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6.3.1 Test No. HTCB-17 (Design M) 

Test no. HTCB-17 was conducted on February 26, 2014 at approximately 2:10 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 12. 

Table 12. Weather Conditions, Test No. HTCB-17 

Temperature 31° F 

Humidity 40% 

Wind Speed 23 mph 

Wind Direction 230° From True North 

Sky Conditions Clear 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.04 in. 

Previous 7-Day Precipitation 0.27 in. 

 

During test no. HTCB-17, the bogie impacted the S3x5.7 (S76x8.5) steel post 11 in. 

(279) above the groundline and at a speed of 20.8 mph (33.5 km/h), causing strong-axis bending 

in the post. Upon impact, the foundation assembly began to rotate through the soil, and a plastic 

hinge formed in the post at groundline. By 0.040 seconds after impact, the foundation assembly 

reached a maximum dynamic deflection of 1.2 in. (30 mm). The post continued to bend over 

until the bogie head overrode the top of the post at 0.108 seconds. The top of the concrete 

foundation had permanently displaced ⅝ in. (16 mm) laterally during the impact event, as 

determined from post-test measurements. 

Force vs. deflection and energy vs. deflection curves created from the SLICE-1 

accelerometer data are shown in Figure 38. Initially, inertial effects resulted in a peak force over 

the first few inches of deflection. After a short decrease, the force rebounded to a maximum of 

17.7 kips (78.8 kN) at 3.4 in. (86 mm) of deflection. Following the maximum peak, the force 
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gradually decreased until approximately 14 in. (356 mm) of deflection. The force remained 

below 5 kips (22 kN) for the remainder of the impact event. At the maximum deflection of 33.9 

in. (861 mm), the post assembly had absorbed 141.6 kip-in. (16.0 kJ) of energy. 

Damage to the test article consisted of plastic bending of the post at groundline. The 

concrete foundation remained whole and free of cracks. Only minor scrapes resulting from 

contact with the post were observed on the top surface of the foundation. Time-sequential and 

post-impact photographs are shown in Figure 39. 

 

 
Figure 38. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-17 
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Figure 39. Time-Sequential and Post-Impact Photographs, Test No. HTCB-17 
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6.3.1 Test No. HTCB-18 (Design L) 

Test no. HTCB-18 was conducted on February 26, 2014 at approximately 4:30 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 13. 

Table 13. Weather Conditions, Test No. HTCB-18 

Temperature 36° F 

Humidity 34% 

Wind Speed 20 mph 

Wind Direction 260° From True North 

Sky Conditions Clear 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.04 in. 

Previous 7-Day Precipitation 0.27 in. 

 

During test no. HTCB-18, the bogie impacted the S3x5.7 (S76x8.5) steel post 11 in. 

(279) above the groundline and at a speed of 20.3 mph (32.7 km/h), causing strong-axis bending 

in the post. Upon impact, the foundation assembly began to rotate through the soil, and a plastic 

hinge formed in the post at groundline. By 0.040 seconds after impact, large foundation 

displacements caused the soil behind the foundation to heave. At 0.070 seconds, the foundation 

had reached a deflection of 5 in. (127 mm), and the foundation was continuing to rotate. 

However, continued motion of the foundation was blocked from view by the bogie wheels and 

displaced soil. The post continued to bend over until the bogie head overrode the top of the post 

at 0.138 seconds. The top of the concrete foundation had permanently displaced approximately 6 

in. (152 mm) laterally during the impact event, as determined from post-test measurements. 

Force vs. deflection and energy vs. deflection curves created from the SLICE-1 

accelerometer data are shown in Figure 40. Initially, inertial effects resulted in a peak force over 
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the first few inches of deflection. After a short decrease, the force rebounded to a maximum of 

18.7 kips (83.2 kN) at 3.3 in. (84 mm) of deflection. Following the maximum peak, the force 

gradually decreased until approximately 15 in. (381 mm) of deflection. The force remained 

below 5 kips (22 kN) for the remainder of the impact event. At the maximum deflection of 35.9 

in. (912 mm), the post assembly had absorbed 172.4 kip-in. (20.7 kJ) of energy. 

Damage to the test article consisted of plastic bending of the post at groundline, excessive 

foundation deflection, and significant soil displacements. Aside from the large displacements, the 

concrete foundation remained whole and free of cracks. Time-sequential and post-impact 

photographs are shown in Figure 41. 

 

 
Figure 40. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-18 
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Figure 41. Time-Sequential and Post-Impact Photographs, Test No. HTCB-18 
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6.4 Strong-Soil Testing Discussion 

The results from the bogie testing matrix are summarized in Table 14. Force vs. 

deflection and energy vs. deflection comparisons for all four tests are shown in Figures 42 and 

43, respectively. All four tests resulted in similar force vs. deflection plots, with peak forces 

occurring between 3 in. and 6 in. (76 mm and 152 mm), followed by decreased force magnitudes 

until the bogie overrode the posts. Interestingly, the two tests that resulted in excessive 

foundation displacement, test nos. HTCB-10 and HTCB-18, absorbed more energy than their 

similar-sized foundation counterparts. Since the posts yielded in all four tests, this increase was 

attributed to the energy required to displace the soil surrounding these foundations. 

The first two tests, test nos. HTCB-10 and HTCB-11, were conducted on heavily 

reinforced 12-in. (305-mm) diameter foundations with various embedment depths. During test 

no. HTCB-10, an embedment depth of 30 in. (762 mm) resulted in a permanent displacement of 

2.2 in. (56 mm), which exceeded the limit of 1 in. (25 mm). Thus, 30 in. (762 mm) was too 

shallow to resist excessive displacements, and the deeper foundation embedment depth was 

selected for further testing. Test no. HTCB-11 with a 36-in. (914-mm) deep foundation resulted 

in only 0.8 in. (20 mm) of foundation movement. Subsequently, 36 in. (914 mm) was deemed the 

minimum embedment depth required to prevent excessive displacements for a 12-in. (305-mm) 

diameter foundation installed in strong soil. 

Although a heavier reinforcement configuration was utilized in Designs J and K, damage 

to both 12-in. (305-mm) diameter foundations was similar to that experienced during the first 

round of component testing conducted in weak soil. Test no. HTCB-11 on Design K did not 

result in concrete fracture on the back side of the foundation, but the concrete cracked along the 

same shear plane where failure occurred in the other foundations. Thus, the Design K foundation 

was very near fracture. From these results, it was determined that neither the increased internal 
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steel reinforcement, nor the increased strength of the surrounding soil, could provide enough 

confinement to the concrete foundation to prevent shear cracking and fracture of 12-in. (305-

mm) diameter foundations.  

Test nos. HTCB-17 and HTCB-18 were conducted on concrete foundations with 15-in. 

(381-mm) diameters. During test no. HTCB-17, the 30-in. (762-mm) embedment depth of 

Design M provided enough resistance to limit the foundation displacement to ⅝ in. (16 mm). 

However, test no. HTCB-18 on Design L with an embedment depth of 24 in. (610 mm) resulted 

in an excessive foundation displacement of 6.0 in. (152 mm). Subsequently, 30 in. (762 mm) was 

deemed the minimum embedment depth required to prevent excessive displacements for a 15-in. 

(381-mm) diameter foundation.  

Contrary to previous test results, Designs L and M were not damaged during testing. The 

15-in. (381-mm) diameter concrete foundations remained intact and free of cracks after both 

tests. Increasing the foundation diameter by 3 in. (76 mm) provided enough increase to the 

concrete area through the shear fracture plane to prevent failure/cracking. As such, the 

probability of concrete damage is minimized for foundations with diameters of at least 15 in. 

(381 mm). Although Design N, with an 18-in. (457-mm) diameter, was never tested, its 

increased diameter would only further strengthen the foundation and, thus, could also be utilized 

if so desired. 

It should be noted that the cracking and fracture of the top-back corner of the smaller-

diameter foundations would not necessarily require replacement. The sockets themselves were 

not damaged or excessively rotated, so the foundations could be reused. Thus, a 12-in. (305-mm) 

diameter foundation may still be implemented if there is little concern about this type of concrete 

damage occurring after severe impacts. However, repeated impacts to a foundation would lead to 

further damage and eventually compromise the structural integrity of the foundation.  
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Table 14. Dynamic Testing Summary, Foundations Installed in Strong Soil 

Test                    

No. 
Design  

Diameter 

in. 

(mm) 

Embed. 

Depth 

in. 

(mm) 

Impact 

Velocity       

mph 

(km/h) 

Average Force 

kips (kN) 
Peak 

Force 

kips 

(kN) 

Total 

Energy         

kip-in.      

(kJ) 

Permanent 

Foundation 

Deflection 

in.  

(mm) 

Foundation  

Damage 
@ 10" @ 15" @ 20" 

HTCB-10 J 
12 

(305) 

30 

(762) 

20.6 

(33.2) 

10.8 

(48.0) 

8.3 

(36.9) 

6.8 

(30.2) 

20.7 

(92.1) 

149.6 

(16.9) 

2.2 

(56) 

concrete 

cracking and 

fracture 

HTCB-11 K 
12 

(305) 

36 

(914) 

20.0 

(32.2) 

9.3 

(41.4) 

7.1 

(31.6) 

5.5 

(24.5) 

17.9 

(79.6) 

120.0 

(13.6) 

0.8 

(20) 

concrete  

shear cracking 

HTCB-17 M 
15 

(381) 

30 

(762) 

20.8 

(33.5) 

8.6 

(38.3) 

6.8 

(30.2) 

5.8 

(25.8) 

17.7 

(78.7) 

141.6 

(16.0) 

0.6 

(15) 
None 

HTCB-18 L 
15 

(381) 

24 

(610) 

20.3 

(32.7) 

11.5 

(51.2) 

9.5 

(42.3) 

8.1 

(36.0) 

18.7 

(83.2) 

172.4 

(19.5) 

6.0 

(152) 
None 
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Figure 42. Force vs. Deflection, Foundations Installed in Strong Soil 
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Figure 43. Energy vs. Deflection, Foundations Installed in Strong Soil 
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7 DESIGN DETAILS – ROUND 3, ASPHALT 

Some cable barrier systems are placed within asphalt mow strips to prevent maintenance 

crews from having to cut the vegetation under the cables and around the posts. Mow strips 

provide significant strength increases to socketed foundations in which they encase. Reducing 

the propensity for displacement and concrete cracking allows for the use of smaller and weaker 

post foundations. Thus, it was desired to conduct component testing on socketed foundations 

placed within an asphalt mow strip. Design drawings for the socketed foundations evaluated in 

combination with a 4-in. (102-mm) thick asphalt pad are shown in Figures 44 through 48, and 

photographs of the test installations are shown in Figure 49. Material specifications, mill 

certifications, and certificates of conformity for the reinforced concrete, socketed foundations are 

shown in Appendix A. 

Two different socketed foundation designs were fabricated to evaluate performance in 

combination with asphalt mow strips (only one was actually tested). Both designs had 12-in. 

(305-mm) diameters and the same internal reinforcement pattern (with a ¼-in. (6 mm) difference 

between the transverse steel spacing due to continuity within the socket height). However, 

Design O had an embedment depth of 30 in. (762 mm), while Design P had an embedment depth 

of 36 in. (914 mm). 

The S3x5.7 (S76x8.5) steel post and the HSS 4-in. x 4-in. x ¼-in. (HSS 102-mm x 102-

mm x 6-mm) steel tube socket remained the same as those used in the previous two rounds of 

component testing. Additionally, the minimum concrete strength remained at 3,500 psi (24 

MPa). Cylinder testing revealed the actual strength of the concrete was 4,800 psi (33 MPa). 

Although two foundation designs were fabricated for testing Round 3, only one was 

actually impacted. After conducting testing on Design O and achieving successful results, the 
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increased embedment depth of Design P was deemed unnecessary. Thus, Design P was not 

evaluated through dynamic bogie testing. 
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Figure 44. Bogie Testing Matrix and Setup, Test No. HTCB-19 
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Figure 45. Foundation Configurations, Test No. HTCB-19 
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Figure 46. Reinforcement Details, Test No. HTCB-19 
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Figure 47. Steel Post and Socket Details, Test No. HTCB-19 
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Figure 48. Bill of Materials, Test No. HTCB-19 
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Figure 49. Test Installation, Test No. HTCB-19 
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8 COMPONENT TESTING – ROUND 3, ASPHALT 

8.1 Purpose 

The project sponsors desired to investigate the effects of encasing post foundations within 

asphalt mow strips. Thus, Round 3 dynamic component testing was conducted with the 

foundations placed within a 4-in. (102-mm) thick asphalt mow strip. During Round 3 testing, the 

embedment depth of the foundations was to be varied in order to determine the minimum depth 

required to prevent excessive displacements greater than 1 in. (25 mm). Additionally, the testing 

would evaluate whether the asphalt surrounding the foundations would prevent concrete shear 

cracking on the back side of the foundation. 

8.2 Scope 

One bogie test was conducted on an S3x5.7 (S76x8.5) steel post inserted into a reinforced 

concrete, socketed foundation installed within a 4-in. (102-mm) thick asphalt mow strip. The soil 

below the asphalt was classified as an AASHTO Grade B soil [7], but it was not compacted to 

the strength that was used during Round 2 testing. Test no. HTCB-19 was conducted on a 

socketed foundation with a diameter of 12 in. (305 mm) and an embedment depth of 30 in. (762 

mm). The target impact conditions were an impact height of 11 in. (279 mm), a speed of 20 mph 

(32 km/h), and an angle of 90 degrees, creating a classic “head-on” impact with the strong axis 

of the post. The test matrix is shown in Table 15. 

As described in Chapter 7, two socketed foundation designs were fabricated for 

evaluation during Round 2 component testing. However, after a successful test with limited 

displacement was observed with Design O, testing with the larger configuration, Design P, was 

deemed unnecessary. 
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Table 15. Bogie Testing Matrix, Foundation in Asphalt 

Test 

No. 
Design Soil Type 

Impact 

Height 

 in. 

(mm) 

Impact 

Speed 

mph 

(km/h) 

Impact 

Angle 

deg. 

Embed. 

Depth 

 in. 

(mm) 

Foundation 

Diameter 

in. 

(mm) 

HTCB-19 O 

4” Asphalt 

over 

AASHTO 

Grade B 

11 

(279) 

20 

(32) 
90 

30 

(762) 

12 

(305) 

 

8.3 Asphalt Pad Test Results 

Through component testing, the performance of the socketed foundation was evaluated in 

terms of both structural integrity and displacement of the foundation within an asphalt pad. A 

foundation system had to resist the impact loads without fracture to be deemed adequate. 

Additionally, the researchers desired to limit the displacements of the foundation to less than 1 

in. (25 mm), as measured at groundline. The combination of these criteria would ensure that a 

socketed foundation could be reused in the same system without repairs or resetting.  

Accelerometer data was used to find the resistance force supplied by the S3x5.7 

(S76x8.5) post and foundation assembly. Since the accelerometers were mounted on the bogie 

vehicle, the forces and displacements calculated from the acceleration data were related to the 

motion of the bogie and the forces applied to it from the post. These forces and displacements 

did not directly reflect the force applied to the top of the foundation or the displacement of the 

foundation. However, the recorded forces can be used to indicate approximate force magnitudes 

imparted to the socket. Individual results for all accelerometers utilized during the test are shown 

in Appendix B. Due to the plastic deformation of the post, foundation displacements were 

measured from the high-speed video and post-test field measurements. 
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8.3.1 Test No. HTCB-19 (Design O) 

Test no. HTCB-19 was conducted on May 20, 2014 at approximately 2:00 p.m. The 

weather conditions, as per the National Oceanic and Atmosphere Administration (station 

14939/LNK), were reported and are shown in Table 16. 

Table 16. Weather Conditions, Test No. HTCB-19 

Temperature 83° F 

Humidity 49% 

Wind Speed 16 mph 

Wind Direction 50° From True North 

Sky Conditions Partly Sunny 

Visibility 10 Statute Miles 

Pavement Surface Dry 

Previous 3-Day Precipitation 0.00 in. 

Previous 7-Day Precipitation 0.00 in. 

 

During test no. HTCB-19, the bogie impacted the S3x5.7 (S76x8.5) steel post 11 in. 

(279) above the groundline and at a speed of 22.0 mph (35.4 km/h), causing strong-axis bending 

in the post. Upon impact, the foundation assembly began to translate back, and a plastic hinge 

formed in the post at groundline. The foundation reached a maximum dynamic deflection of 0.3 

in. (8 mm) at 0.028 seconds. The post continued to bend over until the bogie head overrode the 

top of the post at 0.096 seconds after impact. The top of the concrete foundation permanently 

displaced 0.3 in. (8 mm) laterally during the impact event, as determined from video analysis. 

Force vs. deflection and energy vs. deflection curves created from the SLICE-1 

accelerometer data are shown in Figure 50. Inertial effects resulted in a quick peak force over the 

first few inches of deflection. After a brief decrease, the force rebounded to a maximum of 14.8 

kips (65.9 kN) at 3.7 in. (94 mm) of deflection. Following the maximum peak, the force quickly 

decreased to near zero at approximately 8 in. (203 mm) of deflection. The force remained below 
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5 kips (22 kN) for the remainder of the impact event. At the maximum deflection of 31.0 in. (787 

mm), the post assembly had absorbed 112.1 kip-in. (12.7 kJ) of energy. 

Damage to the test article consisted of only plastic bending of the post at groundline. The 

foundation experienced no visible damage. Note, the concrete spalling on the top-left side of the 

foundation had occurred during installation. Time-sequential and post-impact photographs are 

shown in Figure 51. 

 

 
Figure 50. Force vs. Deflection and Energy vs. Deflection, Test No. HTCB-19 
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Figure 51. Time-Sequential and Post-Impact Photographs, Test No. HTCB-19 
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8.4 Asphalt Pad Testing Discussion 

The bogie testing results from a foundation installed within asphalt mow strips are 

summarized in Table 17. As anticipated, the asphalt pad significantly increased the foundation’s 

resistance to displacement. During test no. HTCB-19, the 30-in. (762-mm) deep foundation 

limited permanent set displacements to 0.3 in. (8 mm), well within the 1-in. (25-mm) limit. 

Additionally, the asphalt acted as a bearing surface for the top of the foundation and prevented 

concrete shear cracks from forming. In comparison, test no. HTCB-10 was previously conducted 

on the same size foundation installed in strong soil, but resulted in 2.2 in. (56 mm) of 

displacement and concrete fracture on the back side of the foundation. Due to the success of the 

30-in. (762-mm) foundation design, the 36-in. (914-mm) deep foundation, Design P, was 

deemed overly conservative and, therefore, it was never tested. 

The test article for test no. HTCB-19 was fabricated prior to installation. A hole was 

cored in the asphalt mow strip, and the socketed foundation was dropped into place. This 

installation method resulted in a small gap between the outside of the foundation and the 

surrounding asphalt and was determined to be the critical installation method. The socketed 

foundations may also have been constructed utilizing two other methods: (1) inserting the steel 

components and pouring concrete directly into a cored hole in the asphalt/ground and (2) 

inserting the foundation into the soil (leaving the top above the groundline) and then laying the 

asphalt around the foundation. Either of these two alternative installation practices would result 

in the elimination of the gap between the concrete and asphalt surfaces, and the foundation’s 

resistance to displacements should be even stronger. Thus, all three of the installation methods 

described here are acceptable for system construction. 

The asphalt mow strip utilized during test no. HTCB-19 was 4-in. (102-mm) thick and 4-

ft (1.2-m) wide. In order to maintain stiffness and strength, these dimensions shall be the 
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minimum allowable for real-world system installations. Of course, thicker and/or wider asphalt 

pads would be acceptable. Similarly, a concrete mow strip would also be acceptable for use with 

the socketed foundations. Finally, due to a lack of further component testing on foundations 

installed within pavements, the minimum embedment depth for a foundation should be 30 in. 

(762 mm) regardless of soil strength below the asphalt.  
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Table 17. Dynamic Testing Summary, Foundation Installed in Asphalt 

Test                    

No. 
Design  

Diameter 

in. 

(mm) 

Embed. 

Depth 

in. 

(mm) 

Impact 

Velocity       

mph 

(km/h) 

Average Force 

kips (kN) 
Peak 

Force 

kips 

(kN) 

Total 

Energy         

kip-in.      

(kJ) 

Permanent 

Foundation 

Deflection 

in.  

(mm) 

Foundation  

Damage 
@ 10" @ 15" @ 20" 

HTCB-19 O 
12 

(305) 

30 

(762) 

22.0 

(35.4) 

7.9 

(35.1) 

6.4 

(28.5) 

5.2 

(23.1) 

14.8 

(65.8 

112.1 

(12.7) 

0.3 

(8) 
None 
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

9.1 Summary and Conclusions 

The objective of this research project was to develop a socketed foundation for use with 

S3x5.7 (S76x8.5) posts. The new socketed foundation was required to remain undamaged and 

restrict socket displacements to less than 1 in. (25 mm) during vehicle impacts. If these criteria 

were satisfied, damaged posts could be removed and replaced without repairs or resetting of the 

socketed foundation.  

A total of ten dynamic component tests were conducted on various reinforced concrete 

foundation configurations in three separate rounds of testing. Each round of testing was 

characterized by one of three surrounding soil conditions: weak soil, strong soil, and asphalt pad. 

Testing in various soils was desired in order to understand the effects that in situ conditions have 

on foundation performance. Each component test was conducted with a bogie vehicle impacting 

the post at a height of 11 in. (279 mm) to represent impacts from small car bumpers, except for 

test no. HTCB-5 which had an impact height of 15 in. (381 mm). 

Round 1 testing consisted of five bogie tests conducted on socketed foundations installed 

in a weak, sandy soil. Each socketed foundation measured 12 in. (305 mm) in diameter and 

utilized a 4-in. x 3-in. x ¼-in. (102-mm x 76-mm x 6-mm) steel tube as the post socket. However, 

the internal steel configurations varied between each foundation design evaluated. During the 

tests, the S3x5.7 (S76x8.5) posts bent over, and the foundations rotated backward slightly. An 

embedment depth of 60 in. (1,524 mm) was determined to be the minimum depth required to 

resist excessive displacements for 12-in. (305-mm) diameter foundations in weak soil. However, 

concrete shear cracks formed on the top-back side of each foundation and caused a wedge-

shaped piece of concrete to fracture off. Due to the already extensive steel reinforcement within 

the foundations, it was determined that the concrete foundation would have to be externally 
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confined, or the diameter would have to be increased, to prevent concrete shear fractures during 

severe impact events.  

Round 2 testing consisted of four bogie tests conducted on socketed foundations installed 

in a stiff, strong soil. The first two tests involved heavily reinforced, 12-in. (305-mm) diameter 

foundations, similar to those utilized during Round 1 testing. From these tests, it was determined 

that a minimum embedment depth of 36 in. (914 mm) was required to prevent excessive 

displacements in strong soil. Unfortunately, the concrete shear cracking and fracture observed 

during Round 1 continued during Round 2 testing in the strong soils.  

The second two tests of Round 2 were conducted on 15-in. (381-mm) diameter 

foundations with reduced internal steel compared to the previous designs. The increased cross-

sectional area and concrete shear strength resulted in both foundations being free of cracking 

and/or fracture after the tests. Additionally, 30 in. (762 mm) was found to be the minimum 

embedment depth required to prevent excessive displacements. 

Since the 15-in. (381-mm) diameter foundations were not evaluated in weak soil, the 

recommended embedment depth for Option 2 in weak soil was determined through additional 

analysis. When comparing 12-in. (305-mm) diameter tests from both Round 1 and Round 2 

component testing, the weak soil strength was found to be 36 percent of the strong soil strength. 

Using this relation with the common assumption that soil resistance to post rotation is related to 

the square of the embedment depth, a 50-in. (1,270-mm) embedment depth was conservatively 

estimated for the 15-in. (381-mm) diameter foundation in weak soils. 

Round 3 testing consisted of one bogie test conducted on a 12-in. (305-mm) diameter 

foundation encased within a 4-in. (102-mm) thick asphalt mow strip. The asphalt proved to be 

stiff enough to support the concrete on the back side of the foundation, as no visible damage was 
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observed to the foundation or the asphalt mow strip after the test. A minimum embedment depth 

of 30 in. (762 mm) was found to prevent excessive foundation displacements. 

9.2 Recommendations  

After the results of the component testing program were presented, some project sponsors 

noted a desire to utilize a 12-in. (305-mm) diameter foundation and accept the risks of concrete 

fracture on the back side of the foundations during the rare occurrence of a severe impact event. 

However, other project sponsors wished to have a socketed foundation design that would remain 

free of damage, even in the event of a severe impact. Therefore, three socketed foundation design 

options are recommended for use: (1) a 12-in. (305-mm) diameter foundation; (2) a 15-in. (381-

mm) diameter foundation; and (3) a foundation for use within mow strips. Final design details 

for these socketed foundations for use with S3x5.7 (S76x8.5) posts are shown in Figures 52 

through 57. 

Testing within various soil conditions proved that foundation performance was highly 

related to the surrounding soil strength. As such, the depth of the recommended foundation 

design is variable and should be determined based on the soil conditions at the installation site. 

In addition, a foundation must also extend beyond the frost line of the specific installation site to 

prevent frost heave. Thus, the proper embedment depth of a socketed foundation is based on the 

selected design option, the soil conditions, and the depth to the frost line, as shown by the chart 

in Figure 52. Note, the top portions of each design option should remain as detailed, and only the 

bottom hoop reinforcement spacing may change with the various embedment depths.  

Upon review of the concrete failures observed during the first and second rounds of 

testing, it was noted that the fracture patterns were all the same, regardless of the reinforcement 

configuration. All of the concrete cracks occurred behind the socket tube and above the 

uppermost steel hoop. The additional reinforcement added to strengthen the foundations as the 
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testing program continued did little to prevent the concrete shear cracks. Therefore, the 

reinforcement recommended for Option 1 has a reduced number of steel bars in comparison to 

the tested 12-in (305-mm) foundation designs. Additionally, the concrete clear cover for all rebar 

was decreased from 2 in. (51 mm) to 1½ in. (38 mm) to strengthen the foundation against shear 

cracking. 

The Option 3 design was developed utilizing a 4-in. (102-mm) thick by 4-ft (1.2-m) wide 

asphalt mow strip. Option 3 foundations should only be installed within mow strips of equal or 

greater strength. Thus, asphalt mow strips should be at least 4 in. (102 mm) thick, and there 

should be a minimum of 18 in. (457 mm) between the edge of the foundation and the edge of the 

asphalt mow strip. Since concrete is stronger than asphalt, utilization of Option 3 foundations 

within a concrete mow strip is acceptable. 

These socketed foundations were developed to support any guardrail system utilizing 

S3x5.7 (S76x8.5) support posts. Posts with increased size and strength may require increased 

embedment depth, increased diameters, increased reinforcement, and/or a larger socket tube. On 

the other hand, these foundation details would be applicable to any post with a bending strength 

lower than that of the S3x5.7 (S76x8.5) post, given that it fits inside the socket. Reduced-size 

sockets would also be allowed, as long as the socket remains in the center of the foundation. 

Some guardrail systems are installed within medians and on roadsides with cross slopes, 

e.g., cable barriers. If the top of the socketed foundation is not poured to match the surrounding 

terrain, it would result in the downslope side of the foundation protruding above the groundline. 

To minimize the extent of this protrusion, it is recommended to install the top center of the 

foundation level with the surrounding slope, as shown in Figure 58. Additionally, this 

configuration ensures that the post and cables remain at the correct height. Casting the 

foundation on-site to match the surrounding terrain would also be acceptable. 
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Figure 52. Socketed Foundations for S3x5.7 Posts 
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Figure 53. Socketed Foundation for S3x5.7 Posts, Option 1 Details 
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Figure 54. Socketed Foundation for S3x5.7 Posts, Option 2 Details 
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Figure 55. Socketed Foundation for S3x5.7 Posts, Option 3 Details 
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Figure 56. Socketed Foundations for S3x5.7 Posts, Steel Component Details 
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Figure 57. Socketed Foundations for S3x5.7 Posts, Bill of Materials 
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Figure 58. Placement of Foundation on Slope 
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Appendix A. Material Specifications 
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Figure A-1. Bill of Materials, Test Nos. HTCB-5 through HTCB-9

Item No. Description Material Specifications and/or Grade Reference

a1 AASHTO A-3 Sand

No. 40 Sieve (51% min. pass)                             

No. 200 Sieve (10% min. pass)                    

Plasticity Index (NP)                                            

fine sand

"fill" sand

a2 Concrete Min 3500 psi [24 MPa] Comp. Strength R# 11-0421 (Ticket 1139274) 24033000

a3 #4 Circular Rebar 7" [178] ID Gr. 60 R#11-0401 H#M660231 and H#536736

a4 #4 Rebar 56" [1422] Long Gr. 60 R#11-0401 H#M660231 and H#536736

a5
HSS 4x4x1/4" [HSS 102x102x6.4], 16" 

[406] Long

ASTM A500 Grade B

(Min 42 ksi [289.6 MPa] Yield Strength)
H# S07068

a6 Shim Plate ASTM A36 H# V911523

a7 4x4x1/4" [102x102x6] Steel Plate ASTM A36 H# V911523

a8 S3x5.7 [S76x8.5], 49" [1245] Long Min 50 ksi [344.7 MPa] Yield Strength H# G104598/99

a9 #4 Rebar 26" [660] Long Gr. 60 R#11-0401 H#M660231 and H#536736

a10
HSS 4x4x1/8" [HSS 102x102x3.2], 16" 

[406] Long

ASTM A500 Grade B (Min 42 ksi [289.6 MPa] 

Yield Strength)
H# U03477
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Figure A-2. Bill of Materials, Test Nos. HTCB-10 and HTCB-11 

30" [762] Footer Bill of Materials

Part No. QTY. Part Description Material Specifications Reference 

a1 1 Concrete Shaft 30" [762] Long Min 3500 psi [24 MPa] Comp. Strength R# 12-0357 (Ticket 4132597) 24013000

a2 10 #4 Circular Rebar 7" [178] ID Gr. 60 H# M660231

a3 4 #4 Rebar 26" [660] Long Gr. 60 H# M660231

a4 1 4x4x1/4" [102x102x6] Steel Plate ASTM A36 H# 1042282

a5 1
HSS 4x4x1/4" [HSS 102x102x6.4], 16" 

[406] Long

ASTM A500 Grade B (Min 42 ksi [289.6 

MPa] Yield Strength) H# M44182

a6 1 S3x5.7 [S76x8.5], 49" [1245] Long Min 50 ksi [344.7 MPa] Yield Strength H# G104598/99

a7 2 #4 Rebar 18" [457] Long Gr. 60 H# M660231

24" [610] Footer Bill of Materials

Part No. QTY. Part Description Material Specifications Reference 

a2 10 #4 Circular Rebar 7" [178] ID Gr. 60 H# M660231

a4 1 4x4x1/4" [102x102x6] Steel Plate ASTM A36 H# 1042282

a5 1
HSS 4x4x1/4" [HSS 102x102x6.4], 16" 

[406] Long

ASTM A500 Grade B (Min 42 ksi [289.6 

MPa] Yield Strength) H# M44182

a6 1 S3x5.7 [S76x8.5], 49" [1245] Long Min 50 ksi [344.7 MPa] Yield Strength H# G104598/99

b1 1 Concrete Shaft 24" [610] Long Min 3500 psi [24 MPa] Comp. Strength R# 12-0357 (Ticket 4132597) 24013000

b2 4 #4 Rebar 20" [508] Long Gr. 60 H# M660231

b3 2 #4 Rebar 12" [305] Long Gr. 60 H# M660231

36" [914] Footer Bill of Materials

Part No. QTY. Part Description Material Specifications Reference 

a2 10 #4 Circular Rebar 7" [178] ID Gr. 60 H# M660231

a4 1 4x4x1/4" [102x102x6] Steel Plate ASTM A36 H# 1042282

a5 1
HSS 4x4x1/4" [HSS 102x102x6.4], 16" 

[406] Long

ASTM A500 Grade B (Min 42 ksi [289.6 

MPa] Yield Strength) H# M44182

a6 1 S3x5.7 [S76x8.5], 49" [1245] Long Min 50 ksi [344.7 MPa] Yield Strength H# G104598/99

c1 1 Concrete Shaft 36" [914] Long Min 3500 psi [24 MPa] Comp. Strength R# 12-0357 (Ticket 4132597) 24013000

c2 4 #4 Rebar 32" [813] Long Gr. 60 H# M660231

c3 2 #4 Rebar 24" [610] Long Gr. 60 H# M660231
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15" [381] and 18" [457] Diameter Foundations: Bill of Materials 

Item No. Description Material Specification Reference 

a1 Concrete Shaft 15 [381] Diameter " Min 3500 psi [24 MPa] Compressive Strength Ticket No. 175564 

b1 Concrete Shaft 18 [457] Diameter " Min 3500 psi [24 MPa] Compressive Strength Ticket No. 175564 

a2 #4 Circular Rebar 11 [178] ID " Gr. 60 H# 564780 

b2 #4 Circular Rebar 14 [178] ID " Gr. 60 H# 564780 

a3 #4 Rebar 27 [660] Long " Gr. 60 H# 57134859 

a4 4x4x1/4 [102x102x6] Steel Plate " ASTM A36 N/A 

a5 
HSS 4x4x1/4 [HSS 102x102x6.4]  16" [406] Long 

" 
ASTM A500 Grade B H# R1496 

a6 S3x5.7 [S76x8.5], 49 [1245] Long " 
ASTM A572 Gr. 50 / ASTM A992 / ASTM A209 Gr. 

50 
H# G104598/99 

 

12" [305] Diameter Foundation in Asphalt: Bill of Materials 

Item No. Description Material Specifications and/or Grade Reference 

a1 Concrete Shaft 30" [762] Long Min 3500 psi [24 MPa] Compressive Strength Ticket No. 175564 

a2 #4 Circular Rebar 8" [203] ID Gr. 60 H# 564780 

a3 #4 Rebar 27" [686] Long Gr. 60 H# 57134859 

a4 4x4x1/4" [102x102x6] Steel Plate ASTM A36 N/A 

a5 HSS 4x4x1/4" [HSS 102x102x6.4], 16" [406] Long ASTM A500 Grade B H# R1496 

a6 S3x5.7 [S76x8.5], 49" [1245] Long 
ASTM A572 Gr. 50 / ASTM A992 / ASTM A209 Gr. 

50 
H# G104598/99 

a7 5'x10'x4" [1524x3048x102] Asphalt 52 - 34 Grade Binder R# 13-0434 

 

 

Figure A-3. Bill of Materials, Test Nos. HTCB-17 through HTCB-19 
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Figure A-4. Concrete Material Specification, Test Nos. HTCB-5 through HTCB-9
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Figure A-5. Rebar Material Specification, Test Nos. HTCB-5 through HTCB-9 
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Figure A-6. Rebar Material Test Report, Test Nos. HTCB-5 through HTCB-9
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Figure A-7. Additional Rebar Material Test Report, Test No. HTCB-9
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Figure A-8. Steel Socket Material Specification, Test Nos. HTCB-5 through HTCB-7 and 

HTCB-9 
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Figure A-9. Steel Socket Material Specification, Test No. HTCB-8 
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Figure A-10. Steel Plate Material Specification, Test Nos. HTCB-5 through HTCB-9 



April 28, 2015  

MwRSF Report No. TRP-03-293-15 

118 

 
Figure A-11. Steel Material Specification, Test Nos. HTCB-10 and HTCB-11
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Figure A-12. Steel Socket Material Specification, Test Nos. HTCB-10 and HTCB-11
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Figure A-13. Steel Posts, Test Nos. HTCB-10, HTCB-11, and HCTB-17 through HTCB-19 
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Figure A-14. Concrete Material Specification, Test Nos. HTCB-10 and HTCB-11 
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Figure A-15. Concrete Material Specification, Test Nos. HTCB-17 through HTCB-19 



 

 

1
2
3
 

A
p

ril 2
8

, 2
0
1

5
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
9
3
-1

5
 

 
Figure A-16. Transverse Hoop Rebar, Test Nos. HTCB-17 through HTCB-19 
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Figure A-17. Vertical Rebar, Test Nos. HTCB-17 through HTCB-19 
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Figure A-18. Steel Tube Socket, Test Nos. HTCB-17 through HTCB-19 
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Figure A-19. Asphalt Mix, Test No. HTCB-19 
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Appendix B. Bogie Test Results 

The results of the recorded data from each accelerometer for every dynamic bogie test are 

provided in the summary sheets found in this appendix. Summary sheets include acceleration, 

velocity, and deflection vs. time plots, as well as force vs. deflection and energy vs. deflection 

plots. 
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Figure B-1. Test No. HTCB-5 Results (DTS)

Test Results Summary

Test Number: HTCB-5 Max. Deflection: 29.9  in.

Test Date: 21-Dec-2011 Peak Force: 13.3  k

Failure Type: Post Bending Initial Linear Stiffness: 3.3  k/in.

Total Energy: 140.7  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: D

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 20.83 mph  (30.5 fps) 9.31 m/s

Impact Height: 15 in. 38.1 cm

Bogie Mass: 1843 lbs 836 kg

Acceleration Data: DTS

Camera Data: AOS-5 Perpendicular - 22'

Bogie Properties

Data Acquired

Bogie Test Summary
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Figure B-2. Test No. HTCB-5 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-5 Max. Deflection: 29.5  in.

Test Date: 21-Dec-2011 Peak Force: 13.3  k

Failure Type: Post Bending Initial Linear Stiffness: 2.3  k/in.

Total Energy: 140.3  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: D

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 20.83 mph  (30.5 fps) 9.31 m/s

Impact Height: 15 in. 38.1 cm

Bogie Mass: 1843 lbs 836 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 22'

Bogie Test Summary
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Figure B-3. Test No. HTCB-6 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-6 Max. Deflection: 25.7  in.

Test Date: 4-Jan-2012 Peak Force: 15.8  k

Failure Type: Foundation Fracture Initial Linear Stiffness: 8.1  k/in.

Total Energy: 156.2  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: D

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 19.95 mph  (29.3 fps) 8.92 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1828 lbs 829.2 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 22'

Bogie Properties

Data Acquired

Bogie Test Summary
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Figure B-4. Test No. HTCB-7 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-7 Max. Deflection: 30.2  in.

Test Date: 5-Jan-2012 Peak Force: 13.6  k

Failure Type: Post Bending & Foundation Fracture Initial Linear Stiffness: 3.0  k/in.

Total Energy: 144.6  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: E

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 20.67 mph  (30.3 fps) 9.24 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1828 lbs 829.2 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 20'

Bogie Test Summary
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Figure B-5. Test No. HTCB-8 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-8 Max. Deflection: 31.1  in.

Test Date: 5-Jan-2012 Peak Force: 13.3  k

Failure Type: Post Bending & Foundation Cracking Initial Linear Stiffness: 2.2  k/in.

Total Energy: 143.9  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: F

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 20.85 mph  (30.6 fps) 9.32 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1828 lbs 829.2 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 20'
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Data Acquired
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Figure B-6. Test No. HTCB-9 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-9 Max. Deflection: 26.8  in.

Test Date: 6-Jan-2012 Peak Force: 13.9  k

Failure Type: Post Bending - Foundation Cracking Initial Linear Stiffness: 7.4  k/in.

Total Energy: 130.2  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: strong axis

Design: F

Length: 60 in. 152.4 cm

Embedment: 60 in. 152.4 cm

Diameter: 12 in. 30.5 cm

Impact Velocity: 20.85 mph  (30.6 fps) 9.32 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1828 lbs 829.2 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 20'

Bogie Properties
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Figure B-7. Test No. HTCB-10 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-10 Max. Deflection: 30.2  in.

Test Date: 13-Jun-2012 Peak Force: 20.7  k

Failure Type: Post Failure - Foundation Cracking Initial Linear Stiffness: 3.9  k/in.

Total Energy: 149.6  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: Strong

Design: J

Diameter: 12 in. 30.5 cm

Embedment Depth: 30 in. 76.2 cm

Soil: 1/19/2012  H.E. - 8 

Impact Velocity: 20.6 mph  (30.2 fps) 9.21 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1860 lbs 843.7 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 163"

Bogie Test Summary
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Figure B-8. Test No. HTCB-11 Results (DTS SLICE)

Test Results Summary

Test Number: HTCB-11 Max. Deflection: 30.4  in.

Test Date: 13-Jun-2012 Peak Force: 17.6  k

Failure Type: Post Failure Initial Linear Stiffness: 3.6  k/in.

Total Energy: 122.6  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: Strong

Design: K

Diameter: 12 in. 30.5 cm

Embedment Depth: 36 in. 91.4 cm

Soil: 1/19/2012  H.E. - 8 

Impact Velocity: 20.02 mph  (29.4 fps) 8.95 m/s

Impact Height: 24.875 in. 63.2 cm

Bogie Mass: 1860 lbs 843.7 kg

Acceleration Data: DTS

Camera Data: AOS-5 Perpendicular - 164"

Bogie Test Summary
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Figure B-9. Test No. HTCB-11 Results (EDR-3) 

Test Results Summary

Test Number: HTCB-11 Max. Deflection: 30.1  in.

Test Date: 13-Jun-2012 Peak Force: 17.9  k

Failure Type: Post Failure Initial Linear Stiffness: 3.7  k/in.

Total Energy: 120.0  k-in.

Post Type: Steel

Post Size: S3x5.7 S76x8.5

Post Length: 49 in. 124.5 cm

Embedment Depth: 16 in. 40.6 cm

Orientation: Strong

Design: K

Diameter: 12 in. 30.5 cm

Embedment Depth: 36 in. 91.4 cm

Soil: 1/19/2012  H.E. - 8 

Impact Velocity: 20.02 mph  (29.4 fps) 8.95 m/s

Impact Height: 11 in. 27.9 cm

Bogie Mass: 1860 lbs 843.7 kg

Acceleration Data: EDR-3

Camera Data: AOS-5 Perpendicular - 164"

Bogie Properties
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Bogie Test Summary
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Figure B-10. Test No. HTCB-17 Results (SLICE-1) 

Test Results Summary

Test Description: Event Duration: 0.1117  sec

Test Number: HTCB-17 Max. Deflection: 33.9  in.

Test Date: 2/26/2014 Peak Force: 17.7  k

Failure Type: Initial Linear Stiffness: 5.0  k/in.

Total Energy: 141.6  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 10.89 8.58 6.76 5.81

Post Length: 54.4 85.8 101.4 116.2
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 20.75 mph (30.43 ft/s)

Impact Height:

Bogie Mass: 1925 lb

Accelerometer:

Camera Data:
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Figure B-11. Test No. HTCB-17 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.1117  sec

Test Number: HTCB-17 Max. Deflection: 33.9  in.

Test Date: 2/26/2014 Peak Force: 18.0  k

Failure Type: Initial Linear Stiffness: 5.0  k/in.

Total Energy: 142.9  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.09 8.70 6.82 5.86

Post Length: 55.4 87.0 102.3 117.2
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 20.75 mph (30.43 ft/s)

Impact Height:

Bogie Mass: 1925 lb
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Figure B-12. Test No. HTCB-18 Results (SLICE-1) 

Test Results Summary

Test Description: Event Duration: 0.1342  sec

Test Number: HTCB-18 Max. Deflection: 35.9  in.

Test Date: 2/26/2014 Peak Force: 18.7  k

Failure Type: Initial Linear Stiffness: 5.5  k/in.

Total Energy: 172.4  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 12.45 11.49 9.53 8.11

Post Length: 62.2 114.9 143.0 162.2
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 20.29 mph (29.76 ft/s)

Impact Height:

Bogie Mass: 1925 lb

Accelerometer:

Camera Data: AOS-8 @ 149.5"
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Figure B-13. Test No. HTCB-18 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.1343  sec

Test Number: HTCB-18 Max. Deflection: 35.8  in.

Test Date: 2/26/2014 Peak Force: 18.9  k

Failure Type: Initial Linear Stiffness: 5.4  k/in.

Total Energy: 173.7  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 12.53 11.56 9.61 8.17

Post Length: 62.7 115.6 144.1 163.4
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 20.29 mph (29.76 ft/s)

Impact Height:

Bogie Mass: 1925 lb

Accelerometer:

Camera Data: AOS-8 @ 149.5"
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Figure B-14. Test No. HTCB-19 Results (SLICE-1) 

Test Results Summary

Test Description: Event Duration: 0.0921  sec

Test Number: HTCB-19 Max. Deflection: 31.0  in.

Test Date: 5/20/2014 Peak Force: 14.8  k

Failure Type: Initial Linear Stiffness: 7.4  k/in.

Total Energy: 112.1  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 10.15 7.92 6.39 5.16

Post Length: 50.7 79.2 95.9 103.3
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 21.95 mph (32.19 ft/s)

Impact Height:

Bogie Mass: 1838 lb

Accelerometer:

Camera Data: AOS-8 @ 271"
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Figure B-15. Test No. HTCB-19 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.0917  sec

Test Number: HTCB-19 Max. Deflection: 30.9  in.

Test Date: 5/20/2014 Peak Force: 16.4  k

Failure Type: Initial Linear Stiffness: 6.4  k/in.

Total Energy: 111.4  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 10.29 7.77 6.36 5.07

Post Length: 51.5 77.7 95.4 101.5
Embedment Depth:

Orientation:

Foundation Properties

Design:

Diameter:

Embedment

Soil:

Impact Velocity: 21.95 mph (32.19 ft/s)

Impact Height:

Bogie Mass: 1838 lb
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